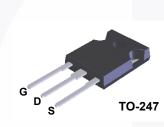


FCH072N60F N-Channel SuperFET[®] II FRFET[®] MOSFET


600 V, 52 A, 72 m Ω

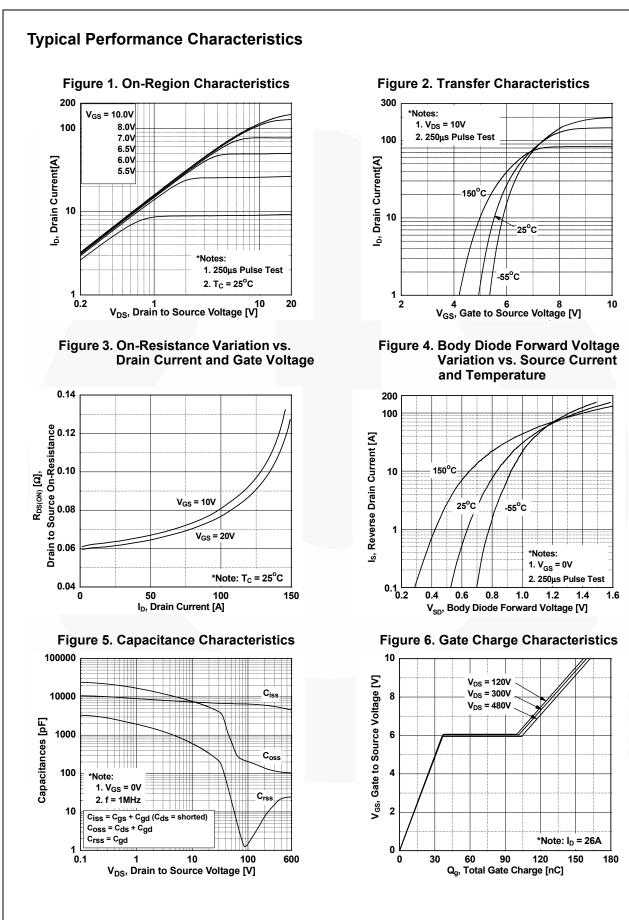
Features

- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 65 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 165 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 441 pF)
- 100% Avalanche Tested
- RoHS Compliant

Description

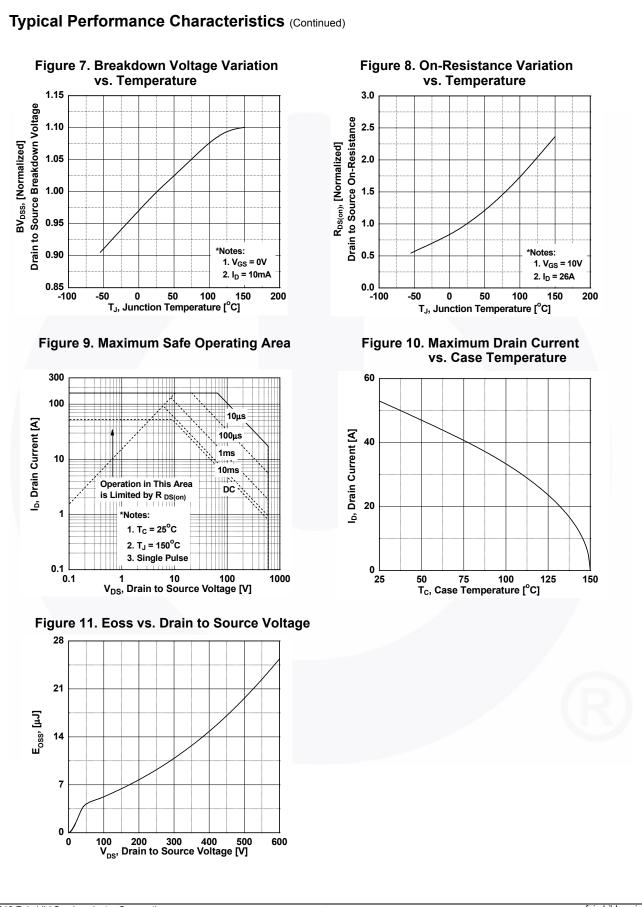
SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. SuperFET II FRFET[®] MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

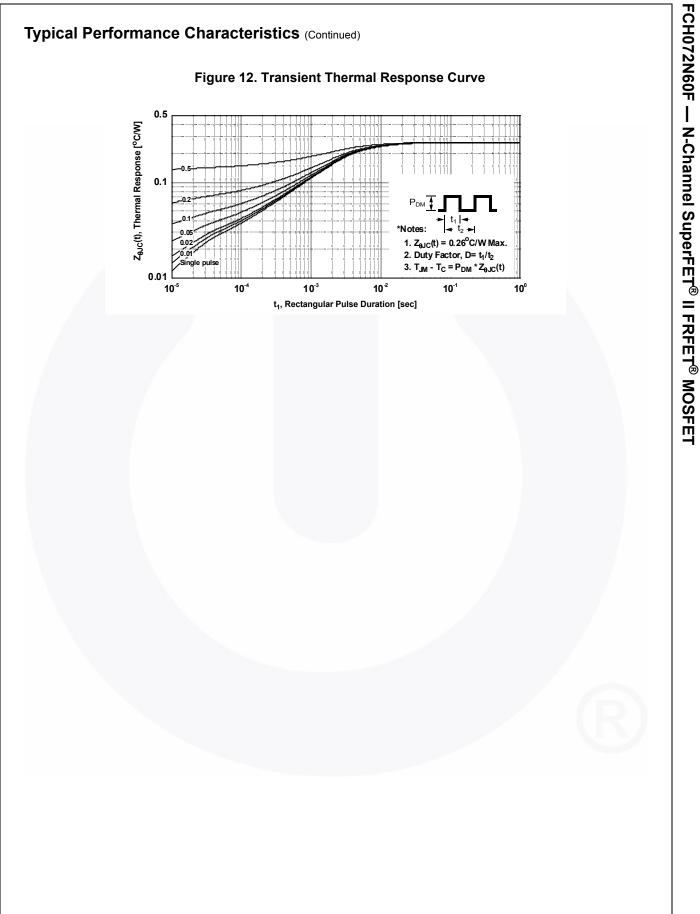
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

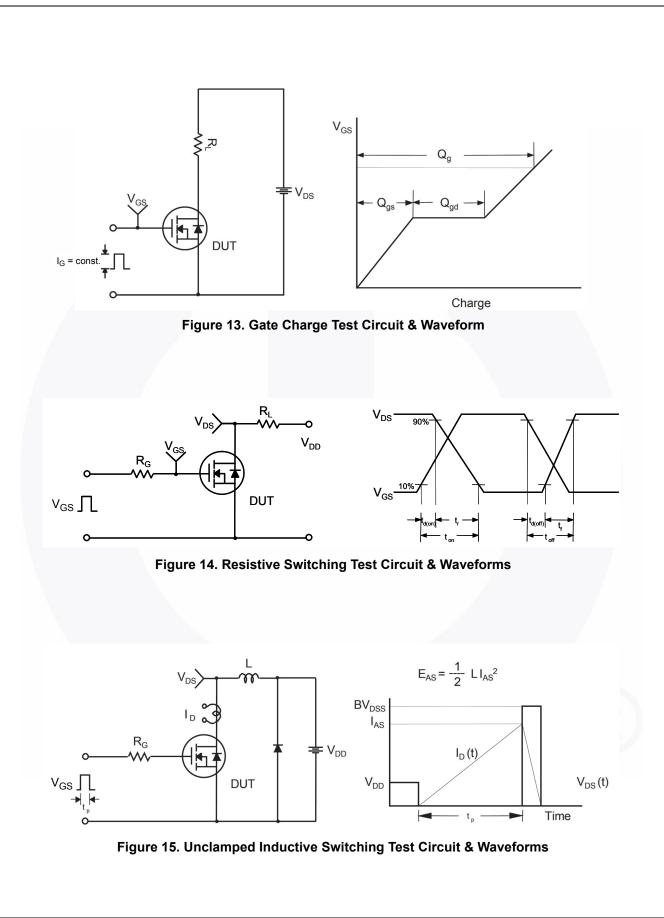

Symbol		Parameter	FCH072N60F	Unit
V _{DSS}	Drain to Source Voltage	600	V	
V _{GSS}	Gate to Source Voltage	- DC	±20	V
		- AC (f > 1 Hz)	±30	v
I _D	Drain Current	- Continuous (T _C = 25 ^o C)	52	— A
		- Continuous (T _C = 100 ^o C)	33	
I _{DM}	Drain Current	- Pulsed (Note 1)	156	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1128	mJ
I _{AR}	Avalanche Current (Note 1)		9.5	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		4.8	mJ
dv/dt	MOSFET dv/dt	100	V/ns	
	Peak Diode Recovery dv/dt	50		
P _D	David Diasia ati an	$(T_{\rm C} = 25^{\rm o}{\rm C})$	481	W
	Power Dissipation	- Derate Above 25°C	3.85	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

Thermal Characteristics

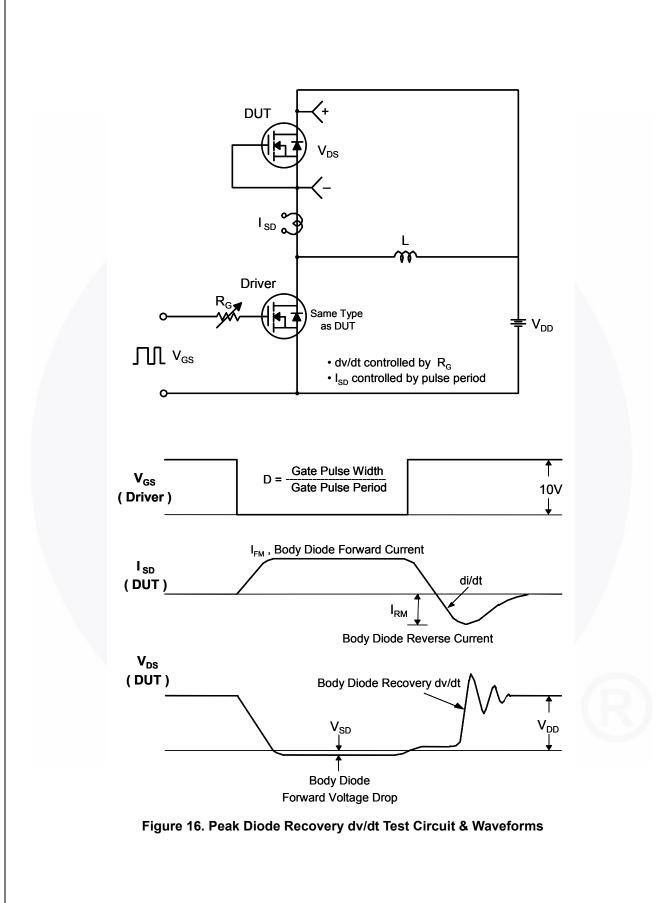
Symbol	Parameter	FCH072N60F	Unit	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.26	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/vv	

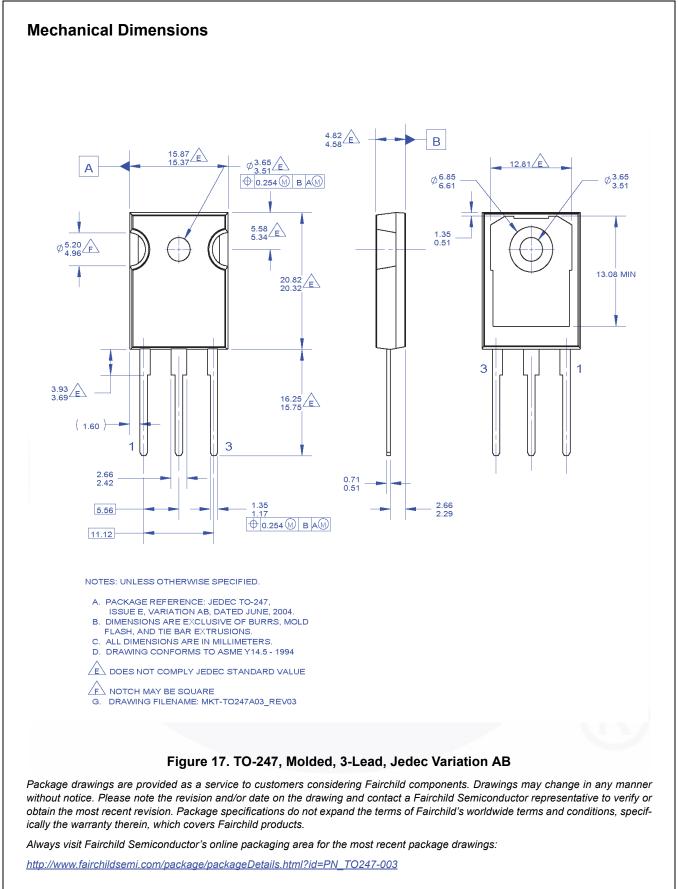

December 2013


	mber	Top Mark	Package	Packing Method	Reel Size	e	Tape Width	Qu	antity	
FCH072N60F		FCH072N60F	TO-247				N/A	30	30 units	
Electrica	l Chara	icteristics T _C = 25°C u	inless other	wise noted.						
Symbol		Parameter		Test Conditions	5	Min.	Тур.	Max.	Unit	
Off Charac	teristics	6			U				1	
BV _{DSS}	Drain to Source Breakdown Voltage		I _D =	10 mA, V _{GS} = 0 V, T _C	; = 25°C	600	-	-	v	
				10 mA, V_{GS} = 0 V, T_{C}	; = 150 ^o C	650	-	-	v	
ΔΒV _{DSS} /ΔT _J	Breakdown Voltage Temperature Coefficient		I _D =	I_D = 10 mA, Referenced to 25°C		-	0.67	-	V/ºC	
DSS	Zero Gat	e Voltage Drain Current		= 480 V, V _{GS} = 0 V	-	-	-	1	μA	
055				= 480 V, V _{GS} = 0 V, T	_C = 125°C	-	-	10	μι	
I _{GSS}	Gate to Body Leakage Current		V _{GS}	V_{GS} = ±20 V, V_{DS} = 0 V		-	-	±100	nA	
On Charac	teristics									
V _{GS(th)}		reshold Voltage		$_{\rm S} = V_{\rm DS}, {\rm I}_{\rm D} = 250 \mu {\rm A}$		3	-	5	V	
R _{DS(on)}	Static Dra	ain to Source On Resistance		;= 10 V, I _D = 26 A		-	65	72	mΩ	
9 _{FS}	Forward	Transconductance	V _{DS}	= 20 V, I _D = 26 A		-	42	-	S	
Dynamic C	haracte	ristics								
C _{iss}	Input Ca	pacitance				-	6510	8660	pF	
C _{oss}	Output C	apacitance		= 100 V, V _{GS} = 0 V, I MHz		-	205	275	pF	
2 _{rss}	Reverse	Transfer Capacitance	. –			-	1.5	2.5	pF	
C _{oss}	Output C	apacitance	V _{DS}	= 380 V, V _{GS} = 0 V, f	= 1 MHz	-	110	-	pF	
Coss(eff.)	Effective	Output Capacitance	-	= 0 V to 480 V, V _{GS} =		-	441	-	pF	
Q _{g(tot)}	Total Gat	e Charge at 10V	Vpc	= 380 V, I _D = 26 A,		-	165	215	nC	
Q _{gs}	Gate to S	Source Gate Charge		= 10 V		-	36	-	nC	
Q _{gd}	Gate to D	Drain "Miller" Charge			(Note 4)	-	66	-	nC	
ESR	Equivale	nt Series Resistance(G-S)	f = 1	l MHz		-	0.78	-	Ω	
Switching	Charact	eristics								
d(on)	-	Delay Time					43	96	ns	
r		Rise Time	Vnn	V_{DD} = 380 V, I _D = 26 A, V_{GS} = 10 V, R _G = 4.7 Ω (Note 4)		-	38	86	ns	
t _{d(off)}		Delay Time				-	140	290	ns	
<u>а(оп)</u> f	Turn-Off					-	25	60	ns	
Jrain Sou	1	e Characteristics								
s	-	Continuous Drain to Source	e Diode For	ward Current		-	-	52	A	
s sм		aximum Continuous Drain to Source Diode Forward Current			-	-	156	A		
SM ∕ _{SD}		Source Diode Forward Voltac			-	-	1.2	V		
		Recovery Time	$V_{GS} = 0 V, I_{SD} = 26 A,$		-	165	-	ns		
2 _m		Recovery Charge	$dI_{\rm F}/dt = 100 \text{ A/}\mu\text{s}$		-	1.15		μC		


©2013 Fairchild Semiconductor Corporation FCH072N60F Rev. C4

www.fairchildsemi.com




5

FCH072N60F — N-Channel SuperFET[®] II FRFET[®] MOSFET

6

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™	
AX-CAP [®] *	FRFET®	
BitSiC™	Global Power Resource SM	PowerTrench [®]
Build it Now™	GreenBridge™	PowerXS™
CorePLUS™	Green FPS™	Programmable Active Droop™
CorePOWER™	Green FPS™ e-Series™	QFET®
CROSSVOLT™	G <i>max</i> ™	QS™
CTL™	GTO™	Quiet Series™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™
DEUXPEED®	ISOPLANAR™	
Dual Cool™	Marking Small Speakers Sound Louder	
EcoSPARK®	and Better™	Saving our world, 1mW/W/kW at a time™
EfficentMax™	MegaBuck™	SignalWise™
ESBC™	MICROCOUPLER™	SmartMax™
r ®	MicroFET™	SMART START™
	MicroPak™	Solutions for Your Success™
Fairchild®	MicroPak2™	SPM®
Fairchild Semiconductor [®]	MillerDrive™ MatienNauTM	STEALTH™ Sum ar EET®
FACT Quiet Series™	MotionMax™ mWSaver [®]	
FACT®	OptoHiT™	SuperSOT™-3 SuperSOT™-6
FAST®	OPTOLOGIC [®]	SuperSOT™-8
FastvCore™	OPTOPLANAR [®]	SupreMOS [®]
FETBench™	OF FOILEANAR	SyncFET™
FPS™		Oynor ET

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Sync-Lock™ SYSTEM^{®*} GENERAL

TinyBoost

TinyBuck®

TinyCalc™

TinyLogic®

TINYOPTO™

TinvPower™

TinyPWM™

TinyWire™

TranSiC™

UHC®

VCX™

XS™

UniFFT™

TriFault Detect™

Ultra FRFET™

VisualMax™

VoltagePlus™

TRUECURRENT®* µSerDes™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.